metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.10D28, C8⋊Dic7⋊7C2, C56⋊1C4⋊3C2, (C2×C8).2D14, C22⋊C8.5D7, C14.7(C4○D8), (C2×C28).239D4, (C2×C4).117D28, (C2×C56).2C22, C28.44D4⋊5C2, (C22×C4).77D14, (C22×C14).50D4, C28.281(C4○D4), C2.9(D56⋊7C2), (C2×C28).740C23, C28.48D4.8C2, C22.103(C2×D28), C14.8(C8.C22), C7⋊1(C23.20D4), C4.105(D4⋊2D7), C2.11(C8.D14), C4⋊Dic7.269C22, (C22×C28).92C22, (C2×Dic14).12C22, C23.21D14.3C2, C14.16(C22.D4), C2.12(C22.D28), (C7×C22⋊C8).7C2, (C2×C14).123(C2×D4), (C2×C4).685(C22×D7), SmallGroup(448,257)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.10D28
G = < a,b,c,d,e | a2=b2=c2=1, d28=e2=c, dad-1=ab=ba, ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd27 >
Subgroups: 444 in 96 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, Q8, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×Q8, Dic7, C28, C28, C2×C14, C2×C14, C22⋊C8, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22⋊Q8, C56, Dic14, C2×Dic7, C2×C28, C2×C28, C22×C14, C23.20D4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, C23.D7, C2×C56, C2×Dic14, C22×C28, C28.44D4, C8⋊Dic7, C56⋊1C4, C7×C22⋊C8, C28.48D4, C23.21D14, C23.10D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, C4○D8, C8.C22, D28, C22×D7, C23.20D4, C2×D28, D4⋊2D7, C22.D28, D56⋊7C2, C8.D14, C23.10D28
(2 214)(4 216)(6 218)(8 220)(10 222)(12 224)(14 170)(16 172)(18 174)(20 176)(22 178)(24 180)(26 182)(28 184)(30 186)(32 188)(34 190)(36 192)(38 194)(40 196)(42 198)(44 200)(46 202)(48 204)(50 206)(52 208)(54 210)(56 212)(57 116)(58 86)(59 118)(60 88)(61 120)(62 90)(63 122)(64 92)(65 124)(66 94)(67 126)(68 96)(69 128)(70 98)(71 130)(72 100)(73 132)(74 102)(75 134)(76 104)(77 136)(78 106)(79 138)(80 108)(81 140)(82 110)(83 142)(84 112)(85 144)(87 146)(89 148)(91 150)(93 152)(95 154)(97 156)(99 158)(101 160)(103 162)(105 164)(107 166)(109 168)(111 114)(113 141)(115 143)(117 145)(119 147)(121 149)(123 151)(125 153)(127 155)(129 157)(131 159)(133 161)(135 163)(137 165)(139 167)
(1 213)(2 214)(3 215)(4 216)(5 217)(6 218)(7 219)(8 220)(9 221)(10 222)(11 223)(12 224)(13 169)(14 170)(15 171)(16 172)(17 173)(18 174)(19 175)(20 176)(21 177)(22 178)(23 179)(24 180)(25 181)(26 182)(27 183)(28 184)(29 185)(30 186)(31 187)(32 188)(33 189)(34 190)(35 191)(36 192)(37 193)(38 194)(39 195)(40 196)(41 197)(42 198)(43 199)(44 200)(45 201)(46 202)(47 203)(48 204)(49 205)(50 206)(51 207)(52 208)(53 209)(54 210)(55 211)(56 212)(57 144)(58 145)(59 146)(60 147)(61 148)(62 149)(63 150)(64 151)(65 152)(66 153)(67 154)(68 155)(69 156)(70 157)(71 158)(72 159)(73 160)(74 161)(75 162)(76 163)(77 164)(78 165)(79 166)(80 167)(81 168)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 141)(111 142)(112 143)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 134 29 162)(2 74 30 102)(3 132 31 160)(4 72 32 100)(5 130 33 158)(6 70 34 98)(7 128 35 156)(8 68 36 96)(9 126 37 154)(10 66 38 94)(11 124 39 152)(12 64 40 92)(13 122 41 150)(14 62 42 90)(15 120 43 148)(16 60 44 88)(17 118 45 146)(18 58 46 86)(19 116 47 144)(20 112 48 84)(21 114 49 142)(22 110 50 82)(23 168 51 140)(24 108 52 80)(25 166 53 138)(26 106 54 78)(27 164 55 136)(28 104 56 76)(57 175 85 203)(59 173 87 201)(61 171 89 199)(63 169 91 197)(65 223 93 195)(67 221 95 193)(69 219 97 191)(71 217 99 189)(73 215 101 187)(75 213 103 185)(77 211 105 183)(79 209 107 181)(81 207 109 179)(83 205 111 177)(113 178 141 206)(115 176 143 204)(117 174 145 202)(119 172 147 200)(121 170 149 198)(123 224 151 196)(125 222 153 194)(127 220 155 192)(129 218 157 190)(131 216 159 188)(133 214 161 186)(135 212 163 184)(137 210 165 182)(139 208 167 180)
G:=sub<Sym(224)| (2,214)(4,216)(6,218)(8,220)(10,222)(12,224)(14,170)(16,172)(18,174)(20,176)(22,178)(24,180)(26,182)(28,184)(30,186)(32,188)(34,190)(36,192)(38,194)(40,196)(42,198)(44,200)(46,202)(48,204)(50,206)(52,208)(54,210)(56,212)(57,116)(58,86)(59,118)(60,88)(61,120)(62,90)(63,122)(64,92)(65,124)(66,94)(67,126)(68,96)(69,128)(70,98)(71,130)(72,100)(73,132)(74,102)(75,134)(76,104)(77,136)(78,106)(79,138)(80,108)(81,140)(82,110)(83,142)(84,112)(85,144)(87,146)(89,148)(91,150)(93,152)(95,154)(97,156)(99,158)(101,160)(103,162)(105,164)(107,166)(109,168)(111,114)(113,141)(115,143)(117,145)(119,147)(121,149)(123,151)(125,153)(127,155)(129,157)(131,159)(133,161)(135,163)(137,165)(139,167), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,163)(77,164)(78,165)(79,166)(80,167)(81,168)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,134,29,162)(2,74,30,102)(3,132,31,160)(4,72,32,100)(5,130,33,158)(6,70,34,98)(7,128,35,156)(8,68,36,96)(9,126,37,154)(10,66,38,94)(11,124,39,152)(12,64,40,92)(13,122,41,150)(14,62,42,90)(15,120,43,148)(16,60,44,88)(17,118,45,146)(18,58,46,86)(19,116,47,144)(20,112,48,84)(21,114,49,142)(22,110,50,82)(23,168,51,140)(24,108,52,80)(25,166,53,138)(26,106,54,78)(27,164,55,136)(28,104,56,76)(57,175,85,203)(59,173,87,201)(61,171,89,199)(63,169,91,197)(65,223,93,195)(67,221,95,193)(69,219,97,191)(71,217,99,189)(73,215,101,187)(75,213,103,185)(77,211,105,183)(79,209,107,181)(81,207,109,179)(83,205,111,177)(113,178,141,206)(115,176,143,204)(117,174,145,202)(119,172,147,200)(121,170,149,198)(123,224,151,196)(125,222,153,194)(127,220,155,192)(129,218,157,190)(131,216,159,188)(133,214,161,186)(135,212,163,184)(137,210,165,182)(139,208,167,180)>;
G:=Group( (2,214)(4,216)(6,218)(8,220)(10,222)(12,224)(14,170)(16,172)(18,174)(20,176)(22,178)(24,180)(26,182)(28,184)(30,186)(32,188)(34,190)(36,192)(38,194)(40,196)(42,198)(44,200)(46,202)(48,204)(50,206)(52,208)(54,210)(56,212)(57,116)(58,86)(59,118)(60,88)(61,120)(62,90)(63,122)(64,92)(65,124)(66,94)(67,126)(68,96)(69,128)(70,98)(71,130)(72,100)(73,132)(74,102)(75,134)(76,104)(77,136)(78,106)(79,138)(80,108)(81,140)(82,110)(83,142)(84,112)(85,144)(87,146)(89,148)(91,150)(93,152)(95,154)(97,156)(99,158)(101,160)(103,162)(105,164)(107,166)(109,168)(111,114)(113,141)(115,143)(117,145)(119,147)(121,149)(123,151)(125,153)(127,155)(129,157)(131,159)(133,161)(135,163)(137,165)(139,167), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,163)(77,164)(78,165)(79,166)(80,167)(81,168)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,134,29,162)(2,74,30,102)(3,132,31,160)(4,72,32,100)(5,130,33,158)(6,70,34,98)(7,128,35,156)(8,68,36,96)(9,126,37,154)(10,66,38,94)(11,124,39,152)(12,64,40,92)(13,122,41,150)(14,62,42,90)(15,120,43,148)(16,60,44,88)(17,118,45,146)(18,58,46,86)(19,116,47,144)(20,112,48,84)(21,114,49,142)(22,110,50,82)(23,168,51,140)(24,108,52,80)(25,166,53,138)(26,106,54,78)(27,164,55,136)(28,104,56,76)(57,175,85,203)(59,173,87,201)(61,171,89,199)(63,169,91,197)(65,223,93,195)(67,221,95,193)(69,219,97,191)(71,217,99,189)(73,215,101,187)(75,213,103,185)(77,211,105,183)(79,209,107,181)(81,207,109,179)(83,205,111,177)(113,178,141,206)(115,176,143,204)(117,174,145,202)(119,172,147,200)(121,170,149,198)(123,224,151,196)(125,222,153,194)(127,220,155,192)(129,218,157,190)(131,216,159,188)(133,214,161,186)(135,212,163,184)(137,210,165,182)(139,208,167,180) );
G=PermutationGroup([[(2,214),(4,216),(6,218),(8,220),(10,222),(12,224),(14,170),(16,172),(18,174),(20,176),(22,178),(24,180),(26,182),(28,184),(30,186),(32,188),(34,190),(36,192),(38,194),(40,196),(42,198),(44,200),(46,202),(48,204),(50,206),(52,208),(54,210),(56,212),(57,116),(58,86),(59,118),(60,88),(61,120),(62,90),(63,122),(64,92),(65,124),(66,94),(67,126),(68,96),(69,128),(70,98),(71,130),(72,100),(73,132),(74,102),(75,134),(76,104),(77,136),(78,106),(79,138),(80,108),(81,140),(82,110),(83,142),(84,112),(85,144),(87,146),(89,148),(91,150),(93,152),(95,154),(97,156),(99,158),(101,160),(103,162),(105,164),(107,166),(109,168),(111,114),(113,141),(115,143),(117,145),(119,147),(121,149),(123,151),(125,153),(127,155),(129,157),(131,159),(133,161),(135,163),(137,165),(139,167)], [(1,213),(2,214),(3,215),(4,216),(5,217),(6,218),(7,219),(8,220),(9,221),(10,222),(11,223),(12,224),(13,169),(14,170),(15,171),(16,172),(17,173),(18,174),(19,175),(20,176),(21,177),(22,178),(23,179),(24,180),(25,181),(26,182),(27,183),(28,184),(29,185),(30,186),(31,187),(32,188),(33,189),(34,190),(35,191),(36,192),(37,193),(38,194),(39,195),(40,196),(41,197),(42,198),(43,199),(44,200),(45,201),(46,202),(47,203),(48,204),(49,205),(50,206),(51,207),(52,208),(53,209),(54,210),(55,211),(56,212),(57,144),(58,145),(59,146),(60,147),(61,148),(62,149),(63,150),(64,151),(65,152),(66,153),(67,154),(68,155),(69,156),(70,157),(71,158),(72,159),(73,160),(74,161),(75,162),(76,163),(77,164),(78,165),(79,166),(80,167),(81,168),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,141),(111,142),(112,143)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,134,29,162),(2,74,30,102),(3,132,31,160),(4,72,32,100),(5,130,33,158),(6,70,34,98),(7,128,35,156),(8,68,36,96),(9,126,37,154),(10,66,38,94),(11,124,39,152),(12,64,40,92),(13,122,41,150),(14,62,42,90),(15,120,43,148),(16,60,44,88),(17,118,45,146),(18,58,46,86),(19,116,47,144),(20,112,48,84),(21,114,49,142),(22,110,50,82),(23,168,51,140),(24,108,52,80),(25,166,53,138),(26,106,54,78),(27,164,55,136),(28,104,56,76),(57,175,85,203),(59,173,87,201),(61,171,89,199),(63,169,91,197),(65,223,93,195),(67,221,95,193),(69,219,97,191),(71,217,99,189),(73,215,101,187),(75,213,103,185),(77,211,105,183),(79,209,107,181),(81,207,109,179),(83,205,111,177),(113,178,141,206),(115,176,143,204),(117,174,145,202),(119,172,147,200),(121,170,149,198),(123,224,151,196),(125,222,153,194),(127,220,155,192),(129,218,157,190),(131,216,159,188),(133,214,161,186),(135,212,163,184),(137,210,165,182),(139,208,167,180)]])
79 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 14J | ··· | 14O | 28A | ··· | 28L | 28M | ··· | 28R | 56A | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 28 | 28 | 28 | 28 | 56 | 56 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
79 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C4○D8 | D28 | D28 | D56⋊7C2 | C8.C22 | D4⋊2D7 | C8.D14 |
kernel | C23.10D28 | C28.44D4 | C8⋊Dic7 | C56⋊1C4 | C7×C22⋊C8 | C28.48D4 | C23.21D14 | C2×C28 | C22×C14 | C22⋊C8 | C28 | C2×C8 | C22×C4 | C14 | C2×C4 | C23 | C2 | C14 | C4 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 4 | 6 | 3 | 4 | 6 | 6 | 24 | 1 | 6 | 6 |
Matrix representation of C23.10D28 ►in GL6(𝔽113)
1 | 0 | 0 | 0 | 0 | 0 |
53 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 82 | 112 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 |
0 | 0 | 0 | 0 | 0 | 112 |
112 | 0 | 0 | 0 | 0 | 0 |
0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
95 | 0 | 0 | 0 | 0 | 0 |
52 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 103 | 24 | 0 | 0 |
0 | 0 | 89 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 96 |
0 | 0 | 0 | 0 | 8 | 94 |
110 | 79 | 0 | 0 | 0 | 0 |
100 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 47 | 0 | 0 |
0 | 0 | 31 | 76 | 0 | 0 |
0 | 0 | 0 | 0 | 59 | 84 |
0 | 0 | 0 | 0 | 7 | 54 |
G:=sub<GL(6,GF(113))| [1,53,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,82,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[95,52,0,0,0,0,0,44,0,0,0,0,0,0,103,89,0,0,0,0,24,1,0,0,0,0,0,0,19,8,0,0,0,0,96,94],[110,100,0,0,0,0,79,3,0,0,0,0,0,0,37,31,0,0,0,0,47,76,0,0,0,0,0,0,59,7,0,0,0,0,84,54] >;
C23.10D28 in GAP, Magma, Sage, TeX
C_2^3._{10}D_{28}
% in TeX
G:=Group("C2^3.10D28");
// GroupNames label
G:=SmallGroup(448,257);
// by ID
G=gap.SmallGroup(448,257);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,232,254,219,142,1123,136,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=e^2=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^27>;
// generators/relations